If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-15x-8=0
a = 4; b = -15; c = -8;
Δ = b2-4ac
Δ = -152-4·4·(-8)
Δ = 353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{353}}{2*4}=\frac{15-\sqrt{353}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{353}}{2*4}=\frac{15+\sqrt{353}}{8} $
| 2x+.50(x)=10 | | 6x+4x-2+15=33 | | F(n)=(n-1)(n-2 | | 2x+58+8x+10=90 | | -12.4z+1.62=-12.5z | | s-4/2=2 | | M2=4x+4 | | 8.5p-13=9.5p-2 | | 9u=-18+10u | | a2+8a+2=0 | | 2x+1/2(x)=10 | | -17.04-9r=14.96-5r | | 9x-25+3x-5+4x+12=90 | | 4(((y+1)/2)+3y=0 | | 3(2x-4=18) | | k+9=-30 | | -3=v+16 | | 1/3x+1=-x+5 | | x+(15x+68)=180 | | 4(((y+1)-2))+3y=0 | | 1-6x=47+3x | | k^2+8k=-15 | | 12q+17=-19+15q | | 5^x-1=4 | | 1-p=13 | | 17y+16=19y-20 | | t+7/12=5/6 | | 24-6x-4=30-3x | | 7p+5=6p+9 | | 3/2y=17/y+2 | | b/2+1/9=17 | | 38+7k=40 |